ON THE MECHANISM OF BOILING CENTERS ACTIVITY

E, I. Nesis UDC 536.423.1

Established are the necessary and sufficient conditions for a depression (pore) in the heater
surface to become a boiling center. Two modes of vapor generation in pores are revealed.

The characteristics of bubble boiling (number of centers, breakaway dimension and frequency, heat
transfer rate, and acoustic noise level) are determined esgsentially by the mechanism of vapor center ac-
tivity on the heater surface, i.e., by the dynamics of nucleation, buildup, and breakaway of the new phase.

As has been mentioned in [1] already, the bhasic source of active centers are depressiong or pores in
a solid surface as well as ready gas bubbles forming on poorly wetted horizontal areas of the hot body sur-

face. After a few subsequent studies [2-18], the physical mechanism of boiling centers activity is still not
quite well understood.

In this article the author analyzes the phenomena which occur in boiling centers often encountered in
practice, namely in conical pores in a wetted surface.

1. We will determine the conditions of activity, i.e., the conditions under which vapor bubbles can
form, build up to macroscopic dimension, and break away.

The role of pores in aiding the vapor generation process is that they contain already formed gas bub-
bles and thus eliminate the potential barrier of surface energy in a superheated liquid, which would other-
wise impede the buildup of subcritical vapor nuclei [1]. Consequently, if a depression in the heater sur-
face is completely filled with liquid, then the formation of a vapor bubble during boiling is not aided in any
way. On the other hand, according to experimental evidence, macroscopic vapor bubbles do not emerge
from all air-filled depressions in a hot solid surface. We must conclude, therefore, that the presence of
some air in a pore next to the liquid is a necessary but not a sufficient condition which determines the va-
por generating capability of the pore. (Pores which contain a gas phase separated from the liquid by a
menigcus may be called potential boiling centers.)

In order to determine the supplementary conditions for a potential center to become active, we con-
sider a conical pore in a heater surface, depth h and vertex angle ¢, which contains insoluble gas and
whose temperature can be varied at will (Fig. 1a).

Before the gas makes contact with the liquid,
let the gas pressure be P%;. After the plate has been
immersed in the liquid, the latter will generally first
penetrate into the pores, forming spherical menisci,
and then evaporate into the air space underneath it.
These processes come to an end when thermodynamic
equilibrium is reached, i.e., when the temperatures
as well as the pressures and the chemical potentials
of both phases become respectively equal.

Let a vapor-gas bubble be formed in the lower
part of the pore, its height x being the characteristic
dimension here., Since the internal pressure inside
Fig,1, Buildup of a bubble from a conical pore. the bubble P; is equal to the sum of the gas pressure
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P and the saturated-vapor pressure Py, while the external pressure P, consists of the hydrostatic pres-
sure Py, and the capillary pressure 20/R = 20/x sing, hence the net force F = P; = P per unit meniscus
area is

26
xsing

F(x)=Pg+ R, —P — (1

L

The gas pressure Pg and the surface tension oare much less dependent on the temperature than the
vapor pressure Py, making it permissible to let

hy\e A
p=p{Z)y_4
G G(x) X3
and

.20 =C, (2)
sing

where A and C are constants,

Introducing AP = Py — Py, and inserting (2) into (1), we have

F(x):ﬁ+AP—£. (3)
%8 X
When mechanical equilibrium is reached inside the pore, the net force vanishes and the following equation

will yield the height of a bubble at equilibrium:

A _c—apx. 4
xZ

The roots of this equation are most easily found by means of graphs, as the intersection points between the
straight line y, = C — APx and the curve y; = A/x? (Fig.2). (One must remember that the curve y;(x) has
two branches, in the first and in the second quadrant respectively. The interaction of the straight line
y2(x) with the second branch yields negative values of x, and, therefore, these roots are of no significance
to our problem.) The slope AP = Py(Ty) — Py, of the straight line (4) characterizes the superheat AT =Ty
— Tg at the heater surface and may be called the vapor supersaturation,

As temperature Ty rises, AP increases from the negative minimum possible value AP = —Pjy, in cold
liquid (Ty « Tg) and approaches zero with increasing subheat T4 — Ty; AP = 0 in saturated liquid (T; = Tg)
and becomes positive in superheated liquid (Ty > Tg). Thus, a rise in the heater temperature corresponds
to a clockwise rotation of the straight line y,(x} about point C, as a result of which the conditions of its in-
tersection with the curve y;(x) change (Fig.2). For cold subheated and for saturated liquid Eq, (4) has only
one positive root, i.e,, there exists only one equilibrium height xy(Ty) for a bubble in the pore. When the

.bubble is purely gaseous, its height x, becomes minimum xy{0) in cold liguid (point K). (We note that,
when AP =0, only one of the remaining two roots is negative and the other lies in infinity.)

For superheated liquid the straightline y,(x) intersects the curve y;(x) in the first quadrant (point M
and N), i.e,, there are two positive roots x; and x,. In other words, two equilibrium positions of a vapor-
gas bubble with respective height x; and x, are possible when the heater temperature becomes Ty > Tg(Py).
As the superheat AT increases, the absolute value of the negative slope of the straight line y,(x) increases
while x4 and x, come closer. At some limiting supersaturation level AP the secant V5 (x) becomes a tangent
y9(x) and both roots merge into one: §1 = §2 =x, It is eagy to prove that the abscissa of the point of tan-

gency is
= 34
X == ‘/_C_

At a superheat above that a bubble in the pore cannot be in equilibrium with the liquid.

In order to completely interpret the mechanism of bubble buildup in a pore, we must still determine
the stability characteristics of the equilibrium states. As is well known, an equilibrium isstable ifthe po-
tential energy U at the given position is minimum, i.e., its second derivative d°U/dx? is positive. Since
the force is F = —dU/dx, the stability of an equilibrium state can also be characterized by the sign of the
first derivative of the force dF/dx: namely, an equilibrium is stable when dF/dx < 0 and unstable when
dF/dx >0,
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Fig. 2, Determining the equilibrium heights of a bubble in the pore,

Fig,.3. Net force (curve a) and potential energy (curve b) of a vapor-gas bubble as func-
tions of the bubble height.

Differentiating Eq. (3) yields
‘E:_l—(ic_ﬁ>. ()

It follows from here that F'(x) is negative for small values of x and positive for large values of x. It be-
comes zero when x = v3A/C =x, i.e., at the abscissa which corresponds to the point of tangency between
lines y;x) and yo{x).

Thus, in superheated liquid the vapor-gas bubbles are in a stable equilibrium and behave like gas
bubbles when their height is x; <x, but are unstable and behave like vapor bubbles when their height is x,
> X.

Knowing the derivative function F'(x), one can eagily determine the general trend of the curve F(x}
(Fig.3). The potential energy u = — | F{x)dx + const of a bubble in a pore has been plotited in Fig,3b as a
function of the bubble height x.

2. We will now analyze the process of bubble buildup. Let the system be initially cold and, there-
fore, the bubble in the pore be a pure gas bubble with a height x,(0). As temperature Ty rises, the liquid
will evaporate and the bubble will thus become larger. As long as Ty = T, however, the bubble remains
absolutely stable and the pore remains passive. When the surface becomes so hot that Ty > Tg, the vapor-
gas bubble in the pore reaches its first equilibrium state at the height x;(T;} and becomes, unlike before,
only relatively stable. Indeed, the height x; differs by a definite amount from the "critical" height x, be-
yond which the bubble will build up faster and faster. Only when the superheat T; — Tg has hecome equal
to AT and the supersaturation Py — Py, has become equal to AP at which the straight lme Vo(x) becomes a
tangent, will the bubbles build up from pores unimpeded.

_Thus, in order to make a potential center in superheated liquid active, the superheat AT must ex-
ceed AT based on the pore geometry, While 0 < AT <AT, however, the pore remains subactive.

In order to determine AT, we will consider AP to be the slope of the tangent to the curve y(x) at
point X, Therefore, as one can easily see,
— 1 /C\
w2 )/ (5]

Inserting here the values of A and C from (2), and expressing hsing in terms of the estuary radius r, we

obtain
AP = (PY™" (i)m. (6)
r
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From here, with the aid of the Clapeyron-Clausius equation, we find the minimum superheat at
which a conical pore becomes active:
T, o8
’ T
hp' r’Pe

AT = (M
Considering that r%h ~ V9 and P%rV0 ~ mgBT,, one can rewrite (7) as
G

v 8
]/mGsin(p ®

AT =
Congequently, a conical pore with a vertex angle ¢ and containing mg grams of gas becomes active when
the surface superheat AT is not less than AT:
AT > AT. (9

With the superheat AT and the initial gas pressure POG given, conversely, the condition for a coni-
cal depression to become active reduces to the requirement that its estuary radius r exceed ry,in:

> (10)
where
D
t in= Fr/Y—]————= (1]_)
RRATY )Y

It is to be noted that, in addition to the preceding simplifications, we have also tacitly assumed a uniform
temperature field in the pore. In reality, however, the heat transfer to the adjoining liquid produces a
temperature gradient across the intermedia boundary on the heater:

gradT = — % (Ty—Ty).

For this reason, the temperature and thus also the superheat AT in a pore increase with depth. The super-
heat inside a pore can be assumed (1 +ah/2k) times higher than at the surface, In view of this, the con-
stant G in (8) must be replaced by G' = G/(1 + ah/2k).

If condition (9) or the equivalent inequality (10) is satisfied, then the vapor-gas bubble will build up
monotonically by first extracting liquid from the pore and then forming above the estuary a continually
rising dome (Fig.1b). When this dome becomes sufficiently large, it will form a neck which quickly nar-
rows down to a peoint (Fig. 1¢) and the upper part of the bubble will break away leaving a small segment
above the pore (Fig. 1d).

3. As to the residual bubble in a pore after the main bubble has broken away, we note two possible
situations.

If the bubble had built up slowly prior to its breakaway, quasistatically, then the thermodynamic
equilibrium prevailed all the time, TFor this reason, the residual bubble in the pore (its volume is denoted
by V¥ is now in equilibrium. As a result of continuing evaporation of the liquid inside, it will build up to a
volume Viyq until again a new bubble with a volume Vi g5 — V* breaks away and the entire process re-
peats. In this case the pore has become a permanent vapor generating center, then, even though the quan-
tity of gas contained in the pore decreases after every breakaway.

An entirely different situation prevails in the case of a fast unbalancedbubblebuildup from a pore,
when the pore walls are locally cooled. As in the case of a bubble at a smooth solid surface [19-22], the
temperature drops in the pore lower as the liquid—vapor interphase boundary moves faster. Since the vel-
ocity of the interphase boundary is determined mainly by the superheat AT, hence, according to (8), the
cooling rate should be highest in narrow pores containing liftle gas.

The large temperature drop in pores after bubble breakaway results in a still larger drop of vapor
pressure Py and thus of the total internal pressure P;j. As a consequence, the mechanical equilibrium is
disturbed and liquid penetrates into the pore. After some time, the temperature returns to its initial level
Ty. The equilibrium height of a bubble in a pore x;(Ti) is lower than x4(T;) (on the other hand, x;(Ti)
>x,(Ty)), because POG has become lower and the curve yy(x) in ]E"ig. 2 has shifted downward, In order now
for a bubble to build up from height x{ to the "critical" height x,, it must overcome a large energy barrier.
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As a consequence, the minimum superheat AT at which the pore becomes active again will be higher after
every breakaway: the boiling center operates periodically in bursts. This analysis has shown that boiling
centers on the heater surface can, depending on the magnitude of AT, operate in two different modes.
Namely, if the superheat AT necessary for activating a surface depression is small (which is the usual
case), then the mode is steady: it is sufficient for a bubble to exceed its critical height once, and the vapor
generating process in the pore will continue as long as desired (even though the quantity of gas contained in
the pore decreases fast).

If the conditions of breakaway are such that only a rather high superheat AT can make the liquid boil,
however, then the operation of pores is unsteady. An example of such a situation is the boiling of liquid
metals on annealed and polished hot surfaces,. especially under vacuum. Since in that case the saturation
temperature Ty and the surface tension o are both high, while the depression radius r and the gas pres-
sure Pg are low, hence, according to (7), the initial superheat_A_.—’I—‘ becomes very high. This is the rea-
son why periodic "spurts of activity" are observed here in the boiling centers, accompanied by strong
acoustic signals and large temperature fluctuations.

4., We will briefly consider the problem of determining the activity density n in boiling centers.
According to the general principles of statistical physics, the probability of some defect (crack, de-

pression, pore, etc.) appearing on a solid surface is a function of the work E necessary to produce it:

E
W = { _— . 12
const exp ( T ) (12)

One may assume, to the first approximation, that the work necessary to produce a pore of radius r

is proportional to its cross-section area: E = eré, Coefficient ¢ is numerically equal to the energy neces-

sary to produce a pore of unit radius, it characterizes the surface "strength" of the material.

It is reasonable to assume that there exists a dimensional distribution
er?
dn(r) =aex ——-)dr, 13
(1) = aexp ( = (13)

with dn(r) denoting the number of pores per 1 cm? whose radii are from r to r + dr, and a denoting a con-
stant of the same order of magnitude as the number of molecules per unit area,

Thus, we have for the activity density in boiling centers the following expression:

Tmax e
er?
n=a e — | dr, 14
S xp ( o) (14)
"min

where ry, i, is determined from Eq. (7) and 1y, 55 is the largest radius with which a pore can still be con-
sidered capillary (ryax is usually about 1 mm).

As to the effect of surface treatment, it apparently contributes to the closing up of larger pores
(whose radius is larger than some rg;ry decreases with improved surface treatment). In this case the up-
per limit of integration in (14) must be replaced by 1.

In order to make formula (14) practically useful, one must first determine independently the coeffi-
cient € and the critical radius r, for a given surface treatment,

NOTATION
r, h, ¢ are the radius, depth, and vertex angle of conical pore;
h—-x is the depth of liquid penetration into the pore;
Py, is the liquid pressure;
Pg is the gas pressure;
Py is the vapor pressure;
Py is the internal pressure in a bubble in the pore;
P, - is the external pressure on a bubble in the pore;
AP = Py—Pr, is the vapor supersaturation;
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is the saturation temperature;

is the heater temperature;

is the liquid temperature;

“is the superheat;

is the heat transfer coefficient;

is the thermal conductivity of heater material;
is the specific heat of evaporation;

is the vapor density;

is the potential energy;

is the pore volume;

is the mass of gas contained in the pore;
is the specific gas constant;

a
and D= (%s,—)z/ " are the constants which depend on the kind of liquid;
R =xsing is the curvature radius of meniscus;
A= Pg;h3 is a constant.
LITERATURE CITED
1. E, 1. Nesis, Zh, Tekh, Fiz,, 21, No. 9, 1506 (1952),
2. S. G. Bankoff, J. AIChE, 4, No. 1, 24 (1958).
3. H. B. Clarke, P, S. Strenge, and J. Westwater, Chem. Eng. Progress, Symp. Ser. 55, 103 (1959).
4, P. S. Strenge, A. Orell, and J. Westwater, J. AIChE, 7, No. 4, 578 (1961). -
5. P. Griffith and J. D. Wallis, Chem. Eng. Progress, Symp. Ser. 56, No. 30, 49 (1960).
6. H. M. Kurihara and J. E. Myers, J. AIChE, 6, No. 1, 83 (1960).
7. 8. S. Hsu, Trans. ASME Heat Transmission, 84C, No. 3, 207 (1962).
8. C. Y, Han and P. Griffith, Internatl. J. Heat and Mass Transfer, 8, No. 6, 887 (1965),
9. P. I. Martoand W. W. Rohsenow, Trans. ASME Heat Transmission, 88C, No. 2 (1966).
10. J. R. Howell and R. Siegel, Proc. Third Internatl. Confer. on Heat and Mass Transfer, 4, 12,
Chicago (1966).
11, Y. Heled and A, Orell, Internatl. J. Heat and Mass Transfer, 10, No. 4 (1967).
12, C. Weg and G. Preckshot, Chem. Eng. Sci., 4, 838 (1964).
13. P. J. Marto and R. L. Sowersky, ASME Pape; HT-16, 1-9 (1970).
14, W. W. Rohsenow, ASME Paper HT-18, 1-11 (1970).
15, P. G. Kosky, Internatl. J. Heat and Mass Transfer, 11, 929 (1968).
16. R. E. Holtz and R. M. Singer, Chem. Eng. Progress, Symp. Ser. 65, No. 92 (1969).
17.  R. M. Singer and R. E. Holtz, Proc. Fourth Internatl. Confer. on Heat and Mass Transfer 6,
13-8, 6, Paris (1970).
18. O. E. Dwyer, Internatl, J. Heat and Mass Transfer, 12, No. 11 (1969).
19. S. S. Hsu and F. Schmidt, Trans. ASME Heat Transmission, 83C, No, 3, 29 (1961),
20. F. Moore and R. Mesler, J. AIChE, 7, No. 4, 620 (1961). T
21. N, W. Snyder and T. T. Robin, Trans. ASME Heat Transmission, 91C, No. 3, 122 (1969).
22. M. Cooper and A. Lloyd, Internatl. J. Heat and Mass Transfer, 12, , 895 (1969).

844



